
Biology is currently grappling with the challenge of integrating large datasets with a 
body of scientific knowledge that has grown too large and complex for any single 
scientist to read or understand. The size and scope of large-scale data compendia (“big 
data”) has created analytical challenges that require new solutions, ideally ones that 
make use of aggregated scientific knowledge. The capacity of modern experimental 
methods to generate data about biological processes has surpassed the ability of 
existing informatics approaches to generate meaningful mechanistic explanations. 
Mechanistic systems biology models could potentially address this gap, but model 
construction remains a labor-intensive process requiring both biological knowledge and 
modeling expertise. As a result, modeling studies remain fairly small in scope and are 
disconnected from genome-scale research. For mechanistic models to attain the 
necessary scope, methods for the automated assembly and analysis of large models 
from available knowledge sources will be required. Here we describe the use of the 
Integrated Network and Dynamical Reasoning Assembler (INDRA)1 to assemble 
mechanistic facts from databases and literature into different types of models for 
explanation of large datasets. 
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Mechanisms are normalized into Statements

Identifying relationships between mechanisms

Relations can be organized into a hierarchy
based on their specificity

A key challenge in assembling detailed 
mechanistic networks is that a single 
mechanism may be described at 
different levels of specificity among the 
literature and various databases. 
Reconciling these overlapping 
mechanisms is essential to eliminate 
spuriously distinct edges in the 
assembled model. Using hierarchical 
ontologies of protein modification types, 
activity types, and the protein family 
information provided in Bioentities, 
INDRA implements duplicate removal, 
hierarchy-based redundancy resolution, 
and other forms of error correction and 
mechanism linking. 

The Integrated Network and Dynamical Reasoning Assembler (INDRA)1 automatically 
assembles mechanistic models from pathway databases, literature, and expert 
knowledge expressed in natural language. INDRA draws on three existing natural 
language processing systems4,5,6 and uses a modular architecture to build different 
types of models from a variety of sources. 

Mechanisms extracted from each 
source format are normalized into 
Statements, an SBO-compatible 
internal representation, where they 
are processed to remove errors, 
identify overlaps, and estimate 
reliability. Statements are designed 
to correspond in both specificity and 
ambiguity to descriptions of 
biochemistry as found in text (e.g., 
“MEK1 phosphorylates ERK2”, rather 
than a detailed reaction mechanism). 
The representation currently 
encompasses post-translational 
modifications, chemical conversions, 
protein expression and degradation, 
and generic activation/inhibition 
relationships. 

Statement

evidence : Evidence

Phosphorylation

Modification

enzyme : Agent
substrate : Agent
residue : string
position : string

"is a" (inheritance)
composition (has one or more, life-cycle dependence)

Statements
Agent and components

Agent

name : string
mods : list[ModCondition]
mutations : list[MutCondition]
bound_conditions : list [BoundCondition]
location : string
activity : ActivityCondition
db_refs : dict

Hydroxylation Dehydroxylation

Ubiquitination Deubiquitination

Dephosphorylation

Acetylation Deacetylation

Glycosylation Deglycosylation

Sumoylation Desumoylation

SelfModification

enzyme : Agent
residue : string
position : string Autophosphorylation

ActiveForm

agent : Agent
activity_type : string
is_active : boolean

Conversion
subj : Agent
obj_from : list[Agent]
obj_to : list[Agent]

Activation

Transphosphorylation

Gef

gef : Agent
gtpase : Agent
gef_activity : string

Gap

gap : Agent
gtpase : Agent
gap_activity : string

ModCondition

mod_type : string
residue : string
position : string
is_modified : boolean

MutCondition

from_residue : string
to_residue : string
position : string

BoundCondition

agent : Agent
is_bound : string

Farnesylation

ActivityCondition

activity_type : string
is_active : boolean

Inhibition

RegulateActivity

subject : Agent
object : Agent
obj_activity : string

RegulateAmount

subject : Agent
object : Agent

Evidence

text : string
source_api : string
source_id : string
pmid : string
annotations : dict
epistemics : dict

IncreaseAmount

DecreaseAmount

Ribosylation Deribosylation

Defarnesylation

Geranylgeranylation Degeranylgeranylation

Palmitoylation Depalmitoylation

Myristoylation Demyristoylation

Other

AddModification

RemoveModification

Methylation Demethylation

Complex

members : list[Agent]

Conceptual overview of automated assembly

System architecture and approach

INDRA software architecture

Estimating the reliability of extracted mechanisms
Even state-of-the-art NLP and text mining 
algorithms have limited accuracy, with roughly 
20-30% of extracted relations representing a 
misinterpretation of the corresponding sentence 
(“reader error”). Given empirical estimates of 
the per-sentence error rate for different readers, 
INDRA’s BeliefEngine component aggregates 
results to estimate the overall probability that a 
relation is the result of reader error. It 
accomplishes this by:

1) aggregating evidence from multiple 
sentences read by the same reader

2) aggregating results from different reading 
algorithms on the same sentence

3) propagating error estimates through the 
network of related statements

Mechanisms can then be filtered with a 
precision threshold (e.g., 95% confidence).

Reading systems produce partially
overlapping extractions

Reliability estimates are propagated 
through the specificity hierarchy

Use case 1: interpreting phosphoproteomic data
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Model representations for statically identifying causal paths
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How did this happen?

http://www.sanderlab.org/pertbio/

Directed protein
interaction graph

Kappa rule
influence map2

Chemical reaction
network

Mechanistic detail/causal context
More false positive paths
(less stringent context)

More false negative paths
(more stringent context)

Boolean network

The assembly challenge

MEK phosphorylates ERK

ERK phosphorylates MEK

MEK1 phosphorylates ERK2 at T185 

MEK1p218p222 phosphorylates ERK2 at T184

MEK1p218p222 phosphorylates ERK2 at T185. 

Methyl Ethyl Ketone phosphorylates ERK

“Raw” mechanisms
MEK phosphorylates ERK

MEK phosphorylates ERK

Assembled mechanisms

In directed interaction graphs, the relatively limited causal context leads to an explosion of paths 
between any two proteins. This leads to many false positive paths and makes identification of long 
causal chains difficult (or even intractable) in large networks.

Generating explanations from the Kappa2 rule influence map

- identifying rules whose activity is increased by the 
abundance of the subject (e.g., drug)

- searching for a path to an observable representing 
the object (e.g., a measured protein) with the 
appropriate overall polarity

- scoring paths by whether the signs of measured 
intermediate nodes are correctly predicted

Causal path for “Pervanadate
increases MAPK1 phosphorylation”

Pvd_binds_DUSP

Pvd_binds_DUSP_rev

[0->0];[1->1]

DUSP_binds_MAPK1_phosT185

[1->0]

[0->0];[1->1]
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[0->1]

DUSP_binds_MAPK1_phosT185_rev
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[0->1]

[0->0];[1->1]
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[0->1]

[0->0]

[0->0];[1->1]

MAPK1_pT185

[1->0]

Genome assembly
Sequence reads

Assembled sequence

Knowledge assembly

Assembly of a large number of mechanistic facts is analogous to genome assembly: 
databases and literature yield a large number of redundant, partially overlapping facts 
that may contain errors. Mechanisms must be corrected and “aligned” in order to 
produce a set of facts suitable for generating a non-redundant, non-degenerate model. 

To evaluate the ability of INDRA to systematically generate 
explanations of high-throughput data, we assembled a rule-
based executable model to explain a previously published 
dataset of the phospho-proteomic response of a melanoma 
cell line to 12 different drugs.3 A rule-based model containing 
221 proteins and 1451 rules was assembled from 
mechanisms extracted from databases and ~95,000 
publications (abstracts and full texts). Static analysis of the 
rule influence map provided by Kappa identified possible 
mechanistic paths linking drug targets to experimentally 
observed effects on phosphoprotein abundances.

Drug 
Target

Antibody
Fold-

change
Path

? 

MEK MAPK pT202 0.47

SRC CHK2 pT68 1.75

SRC 4EBP1 pT37 0.44

AKT AKT pT308 0.25

AKT GSK3A/B pS21 0.44

AKT AKT pS473 0.17

AKT S6 pS235 0.36

CDK4 4EBP1 pS65 0.44

CDK4 YBI pS102 2.13

MTOR AKT pT308 2.19

MTOR S6 pS240 0.05

MTOR AKT pS473 3.19

MTOR p70S6K pT389 0.33

MTOR S6 pS235 0.06

PKC GSK3A/B pS21 1.59

PKC S6 pS240 0.47

PKC S6 pS235 0.3

PI3K p70S6K pT389 0.5

PI3K S6 pS240 0.44

PI3K AKT pS473 0.2

PI3K S6 pS235 0.27

SRC phosphorylated on Y418 
phosphorylates PAK2 on S20. PAK2 
phosphorylated on S20 
phosphorylates RAF1 on S338. RAF1 
phosphorylated on S338, T269 and 
S471 phosphorylates MAPK1 on T185. 
MAPK1 phosphorylated on T185 and 
Y187 phosphorylates TP53 on S15. 
TP53 phosphorylated on S20 and S15 
decreases the amount of PLK1. PLK1 
phosphorylates CHEK2 on T68, which 
is measured by CHK2_pT68.

Example explanation: How does Src inhibition 
increase CHK2 pT68? 

Performance: For the largest effects in the data (>50% fold-change) the model generated biochemically 
plausible explanations for 20 of the 22 effects (91%). For effects at the 20% fold-change level, the model
explained 95/135 (70%) of 
effects. Notably, 
performance was biased 
toward drug targets well-
represented in the literature 
corpus: the model explained 
94/106 (89%) of effects due 
to PI3K, PKC, SRC, MTOR, 
MEK, AKT, RAF, and JAK 
inhibition, but only 1/29 
(3%) of effects due to CDK, 
STAT or MDM2 inhibition.

The Kappa influence map captures detailed context 
while avoiding the combinatorial explosion of 
chemical species. Paths are obtained by:

Use case 2: explaining gene dependency correlations
We are evaluating the effectiveness of our text-
mined network of ~7.5 million unique 
interactions mined from the literature to identify 
mechanisms mediating correlations between 
gene knockouts in the Broad Cancer 
Dependency Map dataset (http://depmap.org)

Of the 1.7 million correlations (absolute value > 
0.3) we found that while only 6,043 (0.3%) could 
be explained by a known mechanistic link, 22% 
could be explained with a single intermediate 
linking gene, either as a common downstream 
target or part of a pathway. 

Direct connection

Example: correlation of PTPN11 (Shp2)
with EXTL3: 0.42

Network configurations

Pathway A-B

Pathway B-A

Shared target

Shared regulator

Not explanatory

Explanatory
Type Count Percent
(All correlamons) 155,417,265
Correlamons > 0.3 1,763,551 100.0
Direct link 6,043 0.3
Pathway or shared target 380,404 21.6
Correlations explained 386,447 21.9

For a subset of 48,000 correlations involving 340 
cancer-related genes, we found that a higher 
proportion (75%) of the correlations can be 
explained with a single intermediate linking gene.

We are building a browser, the INDRA DepMap
Explainer, to explore these explanations.

Example Explanation: EXTL3 PTPN11FGF2

Support for EXTL3->FGF2:
"These results indicate that by altering HS chain length and composition, EXTL3 
mutations potentiate FGF2 signaling, thereby contributing to the pathophysiology of the 
skeletal dysplasia observed in the patients.” (PMID 28148688)

"Reduced expression of either EXT1, EXT2, or EXTL3 decreased heparan sulfate 
biosynthesis, and consequently suppressed the FGF2 dependent proliferation of mouse 
L fibroblasts.” (PMID 29305908)

"In this study, we show that stimulation of C2C12 myoblasts with FGF-2 induces SHP-2 
complex formation with tyrosyl phosphorylated FGFR substrate 2 alpha (FRS-2 alpha)."

Support for FGF2 -> PTPN11:

IRS1 phosphorylated on S1101 leads to the dephosphorylation of IRS1 on Y612. (1)

IRS1 phosphorylated on S1101 leads to the dephosphorylation of IRS1 on tyrosine. (1)

Serine-phosphorylated IRS1 leads to the dephosphorylation of IRS1 on tyrosine. (3)

IRS1 is dephosphorylated on tyrosine. (2)

IRS1 is dephosphorylated. (28)

IRS1 leads to the dephosphorylation of IRS1 on tyrosine. (4)

Phosphorylated IRS1 leads to the dephosphorylation of IRS1. (1)

IRS1 leads to the dephosphorylation of IRS1. (2)

Modified IRS1 leads to the dephosphorylation of IRS1. (1)

https://github.com/sorgerlab/indra
http://www.sanderlab.org/pertbio/
http://depmap.org/

